edmroot README

Marc Paterno
CD/CEPA/APS/SLD
v00-04-02

December 19, 2003

Abstract

edmroot provides utility classes for the writing and reading of
Root files containing instances of D@ chunks.

This document contains instructions for chunk developers and
maintainers. It describes the modifications a chunk might need
to be converted from the form suitable for use with DOOM to one
suitable also for use with Root. It also describes the additional sup-
port code which chunk developers and maintainers need to write,
to enable use of their chunks within Root.

Contents

[1_Overview| 3
[2 Changes to Chunk Classes| 3
2.1 Dealing with transient data members|. 3
2.2 Dealing with flaws in rootcint] 4
2.2.1 Interaction of templates and namespaces| 4

2.2.2 Template member functions| 5
[3_Creating Root Dictionaries| 6
3.1 Directing rootcint to Build a Dictionary|. 6
3.2 Dealing with a Non-standard Header File Name]. 7
3.3 Dealing with More than One Class in a Header] 7
3.4 Dealing with Dictionary Compilation Failures| 7

_ ilel oL 8

3.6 Library Generation|. 8
3.7 Dictionary Reference Headers| 8

|4 Branch Objects| 9
4.1 Purpose of Branch Objects| 9
4.2 Requirements for Branch Object CLasses| 10
4.3 Registration of Branch Object Classes| 10

[Summary Checklist] 11

1 Overview

The edmroot package contains classes and class templates that sup-
port the saving of D@ chunk instances in Root files. It also contains
classes that support use of such classes at the Root application prompt.

Because the Root persistence mechanism is different from the DOOM
persistence mechanism, any chunk class which is to be saved in a
Root file needs to support both mechanisms. Section |2| describes the
changes which most chunk classes will need in order to support Root
persistence, in addition to the DOOM persistence they already support.
Section (3| describes what needs to be done to cause the D@ build sys-
tem to generate a Root dictionary for a class; this needs to be done for
every class which will be persisted, and every class which will be used
directly from the Root prompt. Section |4| describes the additional class
needed to support creation of Root files. It describes how to create a
“branch object” class, which is used by the TreeWriterPde (please see
the README file in the package tree writer_pkg for a description of
this class) to direct the creation of branches in the Root tree.

The package edmroot_example contains example code, illustrating
all the points in this document.

2 Changes to Chunk Classes

2.1 Dealing with transient data members

Many chunk classes contain transient data members in addition to
the persistent data members. Transient data members are generally
hidden from dOcint by a preprocessor directive, similar to the Figure

#ifndef _ CINT__
SomeClass thing;
#endif

Figure 1: Standard DOOM hiding of transient data members.

For use with Root, such classes need to be modified so that rootcint
will see the data member, but is told that the data member is not to
be persisted, while keeping the data member hidden from dOcint. The
modification is to use the preprocessor symbol __DOCINT__ instead of
_-CINT__, and to tell rootcint the data member is not to be persisted by
using rootcint’s “//!” preprocessor directive, as shown in Figure

Please see the rootcint documentation for more details about the
meaning of “//!”.

IThis is the class for the framework package responsible for writing chunks to Root
files.

#ifndef _ DOCINT__
SomeClass thing; //!
#endif

Figure 2: Modified file, hiding transient data member from DOOM and
and making it non-persistent in ROOT.

2.2 Dealing with flaws in rootcint

There are some features of the C++ language with which rootcint is un-
able to cope. This section presents those which have caused problems;
it will be updated as new problems are discovered, or as new versions
of rootcint remove previous failures.

The package edmroot example contains the class SampleChunk,
which illustrates how to support transient data members for both DOOM
and Root.

2.2.1 Interaction of templates and namespaces

rootcint does not always deal correctly with name lookup. The most
important place where this flaw causes failures is in name lookup for
the types used as template arguments. Figure [3| shows code which
rootcint does not handle correctly.

#include <vector>
#include "edm/ChunkID.hpp"
namespace edm

{
struct MyChunk

{

3
}

std::vector<ChunkIiD> _x; // rootcint fails

Figure 3: Root fails to deal correctly with name lookup.

rootcint is unable to associate the name ChunkID with edm::ChunkID,
even though it is being used in a scope where the rules of C+ require
this association. The work-around is to use a qualified name, even
where C+ does not require it, as shown in Figure

The class SampleChunk in package edmroot_example demonstrates
this work-around.

#include <vector>
#include "edm/ChunkID.hpp"
namespace edm

{
struct MyChunk

{

std::vector<edm::ChunkIlD> _x; // rootcint OK
h
}

Figure 4: Workaround for name lookup failure in rootcint.

2.2.2 Template member functions

rootcint is generally unable to deal with member function templates.
Member templates will not be usable from the Root application prompt.
Usually, template members will have to be hidden from rootcint, so
that it does not produce spurious warnings or errors. Figure 5] shows
an example of a member function template for a simple class.

class SomeClass

{
public:
template <class T> void f(T t); // rootcint fails

h

Figure 5: A simple class with a member template.

Member templates should be hidden from rootcint, as shown in Fig-

ure [6]

struct SomeClass

{

#ifndef _ ROOTCINT _

template <class T> void f(T t); // rootcint OK
#endif

¢
Figure 6: Member templates should be hidden from rootcint.

The class SampleChunk in package edmroot_example demonstrates
this work-around.

/I contents of edm/src/TestChunk_linkdef.h
#ifdef _ ROOTCINT _

#pragma link C++ nestedclass;

#pragma link C++ nestedtypedef;

#include "edmroot/ChunkWrapper.hpp"

#pragma extra_include "edmroot/ChunkWrapper.hpp"
#pragma extra_include "identifiers/EnviD.hpp"

#pragma link C++ namespace edm;
#pragma link C++ class edm::TestChunk+;
#pragma link C++ class edm::ChunkWrapper<edm::TestChunk>-;

#endif
Figure 7: Sample linkdef file for the class TestChunlc.

3 Creating Root Dictionaries

For each class that will be saved to a Root file, and which will be used
from the Root prompt, it is necessary to create a Root dictionary. This
includes not only chunk classes themselves, but also the classes of
persistent data members of chunks, and any other class used in the
interface of a chunk, and for which the chunk author wants to provide
functionality at the Root application prompt.

3.1 Directing rootcint to Build a Dictionary

In the standard D@ file naming scheme, a class SomeClass will be
defined in a the header SomeClass.hpp . In order to have the D@ build
system create the Root dictionary for this class, the chunk maintainer
must put the appropriate “linkdef” file in the source directory for the
package.

Figure [7| shows the linkdef file for the class edm::TestChunk. The
header for this class is edm/edm/TestChunk.hpp , so the linkdef file is
called edm/src/TestChunk _linkdef.h

This linkdef file contains directives to generate a dictionary for each
of two different classes: the chunk class (edm::TestChunk) and also an
edmroot support class, edm::ChunkWrapper<edm::TestChunic>.

Please note the + or — after the classnames. These are not typo-
graphical errors, and are required. See the rootcint documentation for
a full explanation.

The file src/SampleChunk _linkdef.h in package edmroot_example

demonstrates what is needed to support a standard chunk.

3.2 Dealing with a Non-standard Header File Name

Some packages may use other file extensions (for example, .h) other
than .hpp for class headers. The presence of a linkdef file (described
in section and the mentioning of the class in the ROOTCOMPONENTS
files (described in section [3.5| will cause the generation of a dictionary
which expects a header with the extension .hpp . In such a case, the
simplest solution is to add an additional header, following the standard
naming scheme, to the package’s header directory. This header need
only include the header with the non-standard naming scheme. No
other entry is needed. Figure |8 shows the file Example.hpp , which
includes the non-standard named Example.h .

#include "example_ package/Example.h"

Figure 8: Example of handling a non-standard header name.

Note that not even an include guard is needed, since the header
Example.h must already contain one.

3.3 Dealing with More than One Class in a Header

In some cases, there may be more than one class defined in a given
header. In such a case, the corresponding linkdef file should contain
a “pragma link C++ class” directive for each class to be used by Root,
and a “pragma link C++ namespace” directive for each namespace in
the file. Make sure to include nested classes.

The file src/SampleChunk _linkdef.h in package edmroot_example
demonstrates how to deal with additonal classes defined in one header.

3.4 Dealing with Dictionary Compilation Failures

In some cases, there is a need for additional headers in the dictio-
nary file. This most often happens when forward declarations are used
in the header being processed; in order to generate the code for in-
teractive use at the Root prompt, a forward declaration is often in-
sufficient. In such cases, one might need to add extra “include” di-
rectives in the linkdef file; it may also be necessary to use “pragma
extra_include”. Figure [9] shows an example, as appears in the header
edm/src/AbsChunk _linkdef.h

In this case, the header for edm/edm/AbsChunk.hpp forward de-
clares the names edm::RCPID and edm::EnvID, which is sufficient for
the use it makes of those names. However, the Root dictionary contains

/I contents of edm/src/AbsChunk_linkdef.h
#ifdef _ ROOTCINT _

#pragma link C++ nestedclass;
#pragma link C++ nestedtypedef;

#pragma link C++ namespace edm;
#pragma link C++ class edm::AbsChunk+;

/I The dictionary needs these headers so that some

/I member functions can be wrapped, but we don’t want
/I them in the AbsChunk.hpp header file.

#pragma extra_include "identifiers/RCPID.hpp"

#pragma extra_include "identifiers/EnviD.hpp"

Figure 9: Example of the use of include directives in a linkdef file.

code which makes additional use of these types, and so requires a the
inclusion of the headers defining them.

In some cases, it is also necessary to add an include directive to the
linkdef file. Please see the rootcint documentation for a full explanation
of linkdef files.

The file src/SampleChunk _linkdef.h in package edmroot_example
demonstrates to use the “extra_include” directive to cure dictionary
compilation failures.

3.5 The ROOT_COMPONENTS File

Packages that use the ctbuild build system must include a ROOTCOMPONENTS
file, similar in nature to the DOOMCOMPONENTSIle. Only those files
mentioned in the ROOTCOMPONENTfle will be processed by rootcint;

the existance of a linkdef file is not sufficient.

3.6 Library Generation

The D@ build system will automatically place the generated Root dictio-
naries for each package into the same library as the rest of the package.
This means that each package for which a Root library is generated will
have a link dependence on Root.

3.7 Dictionary Reference Headers

Framework programs that use TreeWriterPkg to write files need to make
use of the Root dictionaries for each of the classes to be written. How-

ever, the organization of the code is such that no link-time dependence
on the libraries containing the dictionaries is present. To help cause
such a dependence when necessary, each linkdef file must be accom-
panied by a dictionary reference headerE]

For each chunk, the chunk maintainer must provide a header file
Xdict _refhpp . In this file, one must invoke the macro GETDICT, us-
ing the name of the chunk class (with any namespace qualification)
as the argument for the macro. One must also #include the dictio-
nary reference headers for whatever classes the chunk class depends
upon. One must also #include edmroot/macros.hpp , where GETDCIT
is defined. Figure shows an example, for the class TestChunks3.

#ifndef EDMROOT_TESTCHUNK3_DICT_REF_HPP
#define EDMROOT_TESTCHUNK3_DICT_REF_HPP

#include "edmroot/macros.hpp”
#include "edmroot/ChunkWrapperBase_dict_ref.hpp"

GETDICT(TestChunk3);

#endif // EDMROOT_TESTCHUNK3_DICT_REF_HPP

Figure 10: An example of a dictionary reference file.

4 Branch Objects

4.1 Purpose of Branch Objects

In order to allow a user to decide which chunk instance will be written
to which branch of the Root tree, each chunk developer and maintainer
is expected to write one (or more) “branch object” class(es).

The purpose of a “branch object” is to:

e create the branch on which instances of the associated class will
be saved,

e select the correct single instance of the associated chunk class,
and

e give that chunk to the edm::TreeWriter to be saved in the Root
output file.

2See the tree writer_package README file for a description of the use of dictionary
reference headers.

4.2 Requirements for Branch Object CLasses
A branch object class must meet the following requirements:
e It must inherit from dOroot::BaseBranchObject.

e It must have a constructor which takes three arguments. The

first argument, of type const std::string& , is the name of the
branch to which the chunks will be written. The second argu-
ment, of type const std::vector<std::string>& , contains (in

string form) parameters which can be used in any fashion the
branch object author wishes; these parameters are set in the RCP
which constructs the TreeWriterPkg object, as described in the
README file for tree writer pkg). The third argument, of type
const edm::RCP& , is the entire package RCP used to configure
the TreeWriterPkg instance.

¢ It must have a member function makeBranch(edm::TreeWriter&)
which must call TreeWriter::makeBranch<X> , using the associ-
ated chunk type as X.

e It must have a member function fill(edm::TreeWriter&, const
edm::Event&) which obtains the correct chunk from the given
edm::Event, and inserts it into the given edm::TreeWriter.

4.3 Registration of Branch Object Classes

A registration mechanism is used to announce branch object classes to
a factory which is responsible at runtime for making the branch object
instances. To support this registration mechanism, the chunk author
must make use to two macros: REGBBQDECL and REGBBQIMPL, de-
fined in the header edmroot/RegistryMacros.hpp

The branch object class associated with a chunk class X should be
XBO, and should be defined in a header named XBO.hpp. It should
be accompanied by a “registration header” XBQref.hpp . The macro
REGBBQDECL should be invoked in this header. Figure shows an
example branch object registration header, for the class ns::XChunkBO.

The companion macro REGBBQIMPL should be invoked in the im-
plementation (.cpp) file for the branch object class. It also takes two
arguments, the namespace and the classname for the branch object
which it is to register.

Note that this macros can not deal with nested namespaces; branch
object classes should not be declared in a nested namespace. This
restriction may be lifted in a later version.

10

#ifndef EXAMPLE_XCHUNKBO_REF_HPP
#define EXAMPLE_XCHUNKBO_REF_HPP

#include "edmroot/RegistryMacros.hpp"
REG_BBO_DECL(ns, XChunkBO);

#endif // EXAMPLE_XCHUNKBO_REF_HPP

Figure 11: The branch object registration file for class ns::XChunkBO.

5 Summary Checklist

The following is a summary check-list of the steps needed to support a
chunk for use in Root.

e Handle transient data members for Root, as well as for DOOM.
e Hide template members from rootcint.

e Write linkdef files for files to be processed by rootcint.

e Write a dictionary reference file for each chunk.

e Write a “branch object” that others will use to direct the selection
of which chunk instance will be saved on which branch, and a
“branch object registry” file to direct program linking. Remember
to invoke the REGBBQIMPL macro in the implementation file for
the branch object.

e Write a branch registry header for the branch object, which in-
vokes the REGBBQDECLmacro for the branch object class.

Finally, it is important to write and run tests to make sure all is
working correctly. These tests should include creation of one or more
chunk(s), saving to and restoring from a DOOM format file, saving to
and restoring from a Root file, and manipulation of the restored objects
from the Root prompt. There are many kinds of defects in the con-
struction and use of the Root dictionaries which the compiler can not
diagnose. As a result, testing of the system is crucial.

11

	Overview
	Changes to Chunk Classes
	Dealing with transient data members
	Dealing with flaws in rootcint
	Interaction of templates and namespaces
	Template member functions

	Creating Root Dictionaries
	Directing rootcint to Build a Dictionary
	Dealing with a Non-standard Header File Name
	Dealing with More than One Class in a Header
	Dealing with Dictionary Compilation Failures
	The ROOT_COMPONENTS File
	Library Generation
	Dictionary Reference Headers

	Branch Objects
	Purpose of Branch Objects
	Requirements for Branch Object CLasses
	Registration of Branch Object Classes

	Summary Checklist

